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Desynchronization of pulse-coupled integrate-and-fire neurons

S. Coombes and G. J. Lord
Department of Engineering Mathematics, Bristol University, University Walk, Bristol, BS8 1TR, United Kingdom

~Received 28 October 1996!

Bifurcation analysis of two pulse-coupled integrate-and-fire neurons is used to determine the importance of
pulse width, propagation delay, andshuntingfor periodic firing patterns. In contrast to models lacking these
simple biological features, stable asynchronous behavior is easily established for reciprocal excitatory coupling
between neurons.@S1063-651X~97!50103-6#

PACS number~s!: 87.10.1e, 02.30.Ks, 47.20.Ky
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The nonlinear dynamics of coupled oscillators consist
of biologically plausible neuron models has recently
tracted much interest in neurobiology due to the discovery
synchronized oscillations in the cat visual cortex@1#. More-
over, many biological rhythms, ranging from breathing
walking, are programmed in part by central pattern gene
ing ~CPG! networks built from neurons. In many cases,
ciprocal synaptic connections between pools of interneur
exist and asynchronous rather than synchronous behavi
the norm@2#. The rhythmic activity of such networks resul
from an interplay of synaptic interactions and intrinsic me
brane properties, belying the need for any persistent exte
influences. Much of the theoretical work in this area uses
analysis of phase-coupled oscillators developed by Ku
moto @3#. Typically, however, no direct link with electro
physiological data obtained at the cellular level is ma
Hence, the role of intrinsic neuromodulation in rhythmic p
tern generation cannot be uncovered from such an anal
Furthermore, neurons~often quiescent in isolation! are mod-
eled as intrinsic oscillators, interacting weakly via the
phase differences rather than signaling with action potent

Modeling the dynamics of biologically realistic pulse
coupled neurons in which details of individual spikes a
included has recently received much attention~see@4# for a
review!. The integrate-and-fire neuron may be regarded a
abstraction that captures the essentials of aspiking neuron
@5#. Indeed, it has been shown that a globally pulse-coup
population of such neurons with excitatory synaptic conn
tions always synchronizes with zero phase difference@6–8#.
However, in real neurons, spike communication is not
stantaneous. The extension of the Mirollo and Strogatz re
map formalism@6# has recently been extended to incorpor
the effect of small transmission delays@9,10#. Interestingly,
for excitatoryspikecoupling, the presence of delays can le
to desychronization. This particular analysis lacks the imp
tant notion that the effective input current to a postsynap
cell has some temporal duration due to the synaptic trans
sion process. Once again, the inclusion of synaptic curr
with realistic rise and fall times can lead to asynchrono
behavior in a pair of pulse-coupled integrate-and-fire neur
@11#. Hence, there is growing evidence that the inclusion
more biologically plausible detail into the integrate-and-fi
neuron model can have important consequences for mo
ing neurobiological CPGs.

A further level of well established neurobiological reali
that is missing from these integrate-and-fire models is
551063-651X/97/55~3!/2104~4!/$10.00
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effect ofshuntingcurrents. Real neurons possess voltage
pendent ionic currents with specific membrane reversal
tentials. The incorporation of such currents induces a ti
dependent cell membrane decay for an integrate-and
neuron. In this Rapid Communication we propose to anal
the consequences of such temporal cell membrane pro
ties, in conjunction with realistic postsynaptic curren
Moreover, we incorporate axonal propagation times and
tend the work in@9,10# to the case of arbitrary delays. Sp
cifically we show that intrinsic modulation of paramete
representing all three of these biological features can lea
stable asynchronous behavior in a pulse-coupled system
two integrate-and-fire neurons with excitatory synapses.
generate oscillations in a system with inhibitory coupli
requires an extra physiological factor such as post-inhibit
rebound@12# or the inclusion of an external driving curren
A more detailed account of this work, together with a stu
of electrical synapses and the effects of dendritic struct
will be presented elsewhere.

In detail, we consider two identical integrate-and-fire ne
rons with mutual excitatory coupling. The state variab
f i , i51,2, is used to represent the cell membrane poten
at neuron 1 and 2, respectively. Leakage currents drivef i
toward a value that depends upon the synaptic input cur
and some resting potential~taken as 0). Cell membran
properties determine a time constantt for each neuron. The
neurons are assumed to fire wheneverf i reaches some
thresholdh, after whichf i is reset to some levelf̄. At this
time, the effect of firing is communicated as a spike of ele
trochemical activity. When this spike arrives at a synap
neurotransmitter is released and triggers a current in
postsynaptic cell. By denoting the time at which neuroni
fires for thenth occasion asTn

i , the potentialsf i evolve
according to the linear ordinary differential equation

df i

dt
52

f i

t
1I i~ t !~s2f i !, tP~Tn

i ,Tn11
i ! ~1!

with the strongly nonlinear reset conditions

lim
e→01

f i~Tk
i 2e!5h, lim

e→01

f i~Tk
i 1e!5f̄. ~2!

Here, I i(t)(s2f i) represents theshunting synaptic input
current from neuronj to neuroni . The membrane reversa
potential,s, is positive for an excitatory synapse and neg
R2104 © 1997 The American Physical Society
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55 R2105DESYNCHRONIZATION OF PULSE-COUPLED . . .
tive for an inhibitory one. The extension of~1! to larger
populations than two is easily achieved, but at the expens
analytical tractability. However, large coupled populations
the type ~1! simplify considerably whent is much larger
than the mean interspike interval andshunting terms are
dropped. In this case a Lyapunov function exists and a
cussion of the rate of approach to periodic solutions is p
sible @13#. Furthermore, an analysis of the effect of delays
also possible under these assumptions@14#.

We restrict attention to the case in which the coup
system~1! fires with a periodD and relative phaseu and
choose the times at which neuron 1 and 2 last fired as 0
2uD, respectively. For example, we may now write the
put to neuron 2 as a sum of delayed pulse functions

I 2~ t !5 (
n→2`

0

H~ t2nD2td! ~3!

with td representing some axonal propagation delay tim
Choosing a biologically plausible pulse shape such as
a function @15#, H(t)5ga2te2at, the infinite sum in~3!
reduces to a convergent geometric progression such
I 2(t)5I (t) with tP@ td ,td1D) and I (t) periodic inD such
that

I ~ t !5
ga2e2a~ t2td!

~12e2aD! H ~ t2td!1
De2aD

~12e2aD! J . ~4!

In a similar fashion one may establish th
I 1(t)5I (t1uD). The evolution of the membrane potentia
in a periodic firing pattern,f i(t1nD)5f i(t), nPZ, now
takes the form

df i

dt
5Ai~ t !f i1Fi~ t !, tP~0,D! ~5!

with

Ai~ t !52
1

t
2I ~ t1h iuD!, Fi~ t !5sI~ t1h iuD! ~6!

andh1511 andh2521. The quantitiesAi(t) may be re-
garded as time dependent cell membrane decay functi
For a single neuron receiving constant high rates of sp
stimulation, the effective cell membrane decay rate is
creased so that the steady state value of cell membrane
tential is lower than would occur in the absence of shunti
Hence, in this context shunts can act to limit the firing rate
a neuron.

The formal solution of~5! is

f i~ t !5E
0

t

Gi~ t,t8!Fi~ t8!dt8, ~7!

Gi~ t,t8!5expE
t8

t

Ai~ t9!dt9, tP~0,D! ~8!

~with f̄50 for simplicity!. The self-consistent solution o
the equations for the somatic potentials given by~7! and~8!
determines both the phase and period for the steady
periodic behavior. Two obvious phase solutions areu50 ~or
of
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equivalentlyu51) andu51/2. Moreover, ifu is a solution,
then (12u) is also a solution.

A simple condition on the phase and period is form
from the expression

G~u,D!5f1~D!2f2~D!50 ~9!

and hencef2(D)5h2G(u,D). To determine the stability of
a given solution suppose thatu is slightly larger than a stable
equilibrium value. Then neuron 2 should fire later to resto
the correct value ofu. This requires thatf2(D) be smaller
thanh, or equivalently, thatG(u,D) should be an increasing
function of u near the equilibrium value. Otherwise a res
will occur, causing a dramatic change in the network dyna
ics. Hence, the condition for stability of a solution is defin
by

]G~u,D!

]u
.0. ~10!

Bifurcation diagrams are produced usingAUTO94 @16#, a nu-
merical continuation code for differential and algebraic eq
tions. The code implements Keller’s pseudo-arclength c
tinuation and in particular for algebraic systems such
considered here:

f i~D!2h50, i51,2 ~11!

detects simple bifurcations and performs branch switchi
Note that due to the solution structure of thef i , each of the
equations in~11! is in fact an integral equation. The use
numerical quadrature allows the reduction of the two integ
equations to two nonlinear algebraic ones. For the purpo
of this Rapid Communication a standard composite Sim
son’s rule was chosen for evaluation of all integrals. A

FIG. 1. Bifurcation diagram ofu vs a with s51. The three
branches above and below the antisynchronous state (u51/2) cor-
respond to three differing values of the time delaytd . The branch
bifurcating fromu51/2 at the lowest value ofa corresponds to the
case with no delay,td50. Successive bifurcations for progressive
larger a correspond to the case with delays,td50.0025 and
td50.1, respectively. Solid~dashed! lines represent stable~un-
stable! solutions.
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R2106 55S. COOMBES AND G. J. LORD
computations were performed withg50.4, h50.25 and a
time scale was chosen such thatt51.

For small values of the synaptic rate constanta there are
two possible states showing either completesynchrony,
u50,1, orantisynchrony, u51/2 ~see Fig. 1!. Only the anti-
synchronous state is stable. With increasinga, correspond-
ing to progressively faster synapses, there is a pitchfork
furcation at a critical value ofa5ac and two additional
equilibria are born. The antisynchronous solution loses
bility and continues as an unstable branch. The two n
states are stable and have intermediate phases, i.e., are
ther synchronous nor antisynchronous and will be term
asynchronous. Also shown in this figure are phase solut
in the presence of small delays (td<0.1). Once again there i
a pitchfork bifurcation from a stable antisynchronous so
tion leading to the creation of two new stable states for so
critical a. Note, however, that in comparison to the solutio
with zero delay,desynchronizationoccurs. With increasing
td , ac occurs at progressively larger values and fora.ac
solution branches move closer to the antisynchronous s
tion. In Fig. 2 we explicitly follow the antisynchronous so
lution and plot the period of oscillation,D, for both this
solution and the asynchronous one that is born from i
ac . The lower set of curves in Fig. 2 corresponds to a s
tem with weaker shunting currents than those plotted abo
This confirms the idea that shunts can act to limit the fir
frequency of the two neuron system. Furthermore, del

FIG. 2. Bifurcation diagram ofD vs a. Line key defined with
(td ,s). The upper set of curves correspond to a system with st
ger shunting current than the lower set. Each set is plotted w
three varying delays defined in the key. Beyond the bifurcat
point ~for each (td ,s), a increasing! a new asynchronous solutio
~with a lower value ofD) appears, born from the antisynchrono
solution shown.
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lead to a decrease in the periodD for a,ac and an increase
in the period of all solutions witha.ac , for a fixed value of
s.

There is also a pitchfork bifurcation in the phaseu as a
function of the shunt parameters. For s less than some criti-
cal valuesc the system fails to oscillate since the thresho
condition can never be reached in this parameter regi
With s.sc three solutions exist, and for larger values ofs
two new stable solutions are created. For small dela
(td,0.075) the bifurcation point and branches shown in F
3 do not vary significantly. Larger delays, however, lead to
more complex bifurcation picture which will be presented
further work. Interestingly, for a large range ofs anda, the
presence of delays leads to the existence of multiple sta
solutions with the same phase but differing period. Note t
multistable dynamical systems have important applicatio
as pattern recognition and memory storage devices.

In the limit a→` a a function approximates thed pulse
shape considered in the seminal work of Mirollo and Str
gatz@6#. In the absence of shunting currents and time dela
the only stable periodic solution is the synchronous one
expected. Importantly, however, we have shown, with re
istic forms of postsynaptic current, that the introduction
shunts and the presence of even arbitrarily small delays le
to the creation of a stable asynchronous solution. With
inclusion of an external input,I 0.h/t, an integrate-and-fire
neuron intrinsically oscillates and rhythmic behavior is po
sible in a purely inhibitory network. In this case bifurcatio
diagrams are qualitatively the same as those presented h
but with a reversal of stability for all solution branches.

n-
th
n

FIG. 3. Bifurcation diagram ofu vs s for td50 anda56. Solid
~dashed! lines represent stable~unstable! solutions.
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