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Desynchronization of pulse-coupled integrate-and-fire neurons
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Bifurcation analysis of two pulse-coupled integrate-and-fire neurons is used to determine the importance of
pulse width, propagation delay, astiuntingfor periodic firing patterns. In contrast to models lacking these
simple biological features, stable asynchronous behavior is easily established for reciprocal excitatory coupling
between neuron$S1063-651X97)50103-9

PACS numbegps): 87.10+¢, 02.30.Ks, 47.20.Ky

The nonlinear dynamics of coupled oscillators consistingeffect of shuntingcurrents. Real neurons possess voltage de-
of biologically plausible neuron models has recently at-pendent ionic currents with specific membrane reversal po-
tracted much interest in neurobiology due to the discovery ofentials. The incorporation of such currents induces a time
synchronized oscillations in the cat visual corfd} More- dependent cell membrane decay for an integrate-and-fire
over, many bio|ogica| rhythms, ranging from breathing tonheuron. In this Rapld Communication we propose to analyze
walking, are programmed in part by central pattern generatthe consequences of such temporal cell membrane proper-
ing (CP(;) networks built from neurons. In many cases, re_t|es, n COI‘\jUijtIOﬂ with realistic pOStsy.napt.IC currents.
ciprocal synaptic connections between pools of interneuroniloreover, we incorporate axonal propagation times and ex-
exist and asynchronous rather than synchronous behavior {§nd the work in[9,10] to the case of arbitrary delays. Spe-
the norm[2]. The rhythmic activity of such networks results cifically we show that intrinsic modulation of parameters
from an interplay of synaptic interactions and intrinsic mem-representing all three of these biological features can lead to
brane properties, belying the need for any persistent externgfable asynchronous behavior in a pulse-coupled system of
influences. Much of the theoretical work in this area uses théVo integrate-and-fire neurons with excitatory synapses. To
analysis of phase-coupled oscillators developed by Kuragenerate oscillations in a system with inhibitory coupling
moto [3]. Typically, however, no direct link with electro- requires an extra physiological factor such as post-inhibitory
physiological data obtained at the cellular level is madefebound[12] or the inclusion of an external driving current.
Hence, the role of intrinsic neuromodulation in rhythmic pat-A more detailed account of this work, together with a study
tern generation cannot be uncovered from such an analysi§f electrical synapses and the effects of dendritic structure
Furthermore, neuron®ften quiescent in isolatiorare mod- ~ Will be presented elsewhere. _
eled as intrinsic oscillators, interacting weakly via their In detail, we consider two identical integrate-and-fire neu-
phase differences rather than signaling with action potentialdons with mutual excitatory coupling. The state variable

Modeling the dynamics of biologically realistic pulse- ®i, i=1,2, is used to represent the cell membrane potential
coupled neurons in which details of individual spikes areat neuron 1 and 2, respectively. Leakage currents dfive
included has recently received much attentisee[4] for a  toward a value that depends upon the synaptic input current
review). The integrate-and-fire neuron may be regarded as agnd some resting potentigtaken as 0). Cell membrane
abstraction that captures the essentials spiing neuron  properties determine a time constantor each neuron. The
[5]. Indeed, it has been shown that a globally pulse-coupledieurons are assumed to fire whenevgr reaches some
population of such neurons with excitatory synaptic connecthresholdh, after which¢; is reset to some levep. At this
tions always synchronizes with zero phase differdiice8].  time, the effect of firing is communicated as a spike of elec-
However, in real neurons, spike communication is not in-trochemical activity. When this spike arrives at a synapse,
stantaneous. The extension of the Mirollo and Strogatz returneurotransmitter is released and triggers a current in the
map formalisn{6] has recently been extended to incorporatepostsynaptic cell. By denoting the time at which neuion
the effect of small transmission delay®,10]. Interestingly, fires for thenth occasion adl},, the potentialsg; evolve
for excitatoryspikecoupling, the presence of delays can leadaccording to the linear ordinary differential equation
to desychronization. This particular analysis lacks the impor-
tant notion that the effective input current to a postsynaptic do; obi P
cell has some temporal duration due to the synaptic transmis- at - 7 Hh(t)(s— i), te(Ty Thiy) @)
sion process. Once again, the inclusion of synaptic currents
with realistic rise and fall times can lead to asynchronousyith the strongly nonlinear reset conditions
behavior in a pair of pulse-coupled integrate-and-fire neurons

[11]. Hence, there is growing evidence that the inclusion of lim ¢i(-|-ik_ e)=h, lim d’i(TLJrf):a 2)
more biologically plausible detail into the integrate-and-fire €0, -0,

neuron model can have important consequences for model-

ing neurobiological CPGs. Here, |;(t)(s— ¢;) represents theshunting synaptic input

A further level of well established neurobiological reality current from neurorj to neuroni. The membrane reversal
that is missing from these integrate-and-fire models is th@otential,s, is positive for an excitatory synapse and nega-
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tive for an inhibitory one. The extension @i) to larger equivalentlyf=1) andf6=1/2. Moreover, iff is a solution,

populations than two is easily achieved, but at the expense dfien (1- 6) is also a solution.

analytical tractability. However, large coupled populations of A simple condition on the phase and period is formed

the type (1) simplify considerably whenr is much larger from the expression

than the mean interspike interval armsthuntingterms are

dropped. In this case a Lyapunov function exists and a dis- G(0,A)=p1(A)— ¢(A)=0 9

cussion of the rate of approach to periodic solutions is pos- . .

sible[13]. Furthermore, an analysis of the effect of delays is"d hencepz(A)=h—g(6,A). To determine the stability of

also possible under these assumptiphg. a g|y¢n_solut|on suppose thaits slightly Iarg_er than a stable
We restrict attention to the case in which the Coup|edequn|br|um value. Then neuron 2 should fire later to restore

system(1) fires with a periodA and relative phas® and e correct value ob. This requires thath,(A) be smaller
choose the times at which neuron 1 and 2 last fired as 0 arfg@nh., or equivalently, thagi(6,A) should be an increasing
— 9A, respectively. For example, we may now write the in- function of ¢ near the equilibrium value. Otherwise a reset
put to neuron 2 as a sum of delayed pulse functions will occur, causing a dramatic change in the network dynam-
ics. Hence, the condition for stability of a solution is defined
0 by
()= 2 H(t-nA—ty) (3)

n——e aG(0,A)

—F>0.

70 (10

with ty representing some axonal propagation delay time.
Choosing a biologically plausible pulse shape such as th
a function [15], H(t)=ga’te” !, the infinite sum in(3)
reduces to a convergent geometric progression such th
[,(t)=1(t) with te[ty,ty+A) andI(t) periodic inA such
that

Bifurcation diagrams are produced usingTo94 [16], a nu-
merical continuation code for differential and algebraic equa-
fibns. The code implements Keller's pseudo-arclength con-
tinuation and in particular for algebraic systems such as
considered here:

ga2€— a(t—tg) Ae™ aA
I(t)_WA)_ (t td)+(1—e‘“ 1k

@ #i(A)—h=0, i=1,2 (11)

o ) . detects simple bifurcations and performs branch switching.
In a similar fashion one may establish that Note that due to the solution structure of g, each of the
I1(t)=1(t+ 6A). The evolution of the membrane potentials equations in(11) is in fact an integral equation. The use of
in a periodic firing patterng;(t+nA)=¢;(t), neZ, now  numerical quadrature allows the reduction of the two integral

takes the form equations to two nonlinear algebraic ones. For the purposes
dob of this Rapid Communication a standard composite Simp-
d—tIZAi(t)¢i+Fi(t), te(0A) (5) son’s rule was chosen for evaluation of all integrals. All
with 1.0 : . : . .
1
Ai(t)Z—;—|(t+ 704), Fi(t)=sl(t+760A) (6 08 |

and »;=+1 and#n,=—1. The quantitie®;(t) may be re-
garded as time dependent cell membrane decay functions.
For a single neuron receiving constant high rates of spike e
stimulation, the effective cell membrane decay rate is in-
creased so that the steady state value of cell membrane po-
tential is lower than would occur in the absence of shunting.
Hence, in this context shunts can act to limit the firing rate of 02 -
a neuron.

The formal solution of5) is

0.6

0.0 ! L 1 1 1

t
¢i(t):fOGi(tvt,)Fi(t,)dt,v @) o

¢ FIG. 1. Bifurcation diagram o¥ vs « with s=1. The three
Gi(t,t')ZeXpJ A(t"dt”, te(0A) (8) branches above and below the antisynchronous statel(2) cor-
t’ respond to three differing values of the time detgy The branch
o — o ] ) bifurcating from#=1/2 at the lowest value at corresponds to the
(with ¢=0 for simplicity). The self-consistent solution of case with no delayty=0. Successive bifurcations for progressively
the equations for the somatic potentials given(Byand(8)  larger « correspond to the case with delays,=0.0025 and
determines both the phase and period for the steady statg=0.1, respectively. Soliddashedl lines represent stabléun-
periodic behavior. Two obvious phase solutions @éred (or  stablg solutions.
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FIG. 2. Bifurcation diagram ofA vs «. Line key defined with FIG. 3. Bifurcation diagram of vs s for t;=0 anda=6. Solid

(tq,8). The upper set of curves correspond to a system with stron¢dashedl lines represent stabl@nstablé solutions.
ger shunting current than the lower set. Each set is plotted with

three varying delays defined in the key. Beyond the bifurcation . . .
point (for each €4,S), « increasing a new asynchronous solution lead to a decrease in the periddfor a<a. and an increase

(with a lower value ofA) appears, born from the antisynchronous in the period of all solutions witkr>«a., for a fixed value of
solution shown. S.

There is also a pitchfork bifurcation in the phageas a
function of the shunt parametsr For s less than some criti-
cal values, the system fails to oscillate since the threshold
condition can never be reached in this parameter regime.
With s>s; three solutions exist, and for larger valuessof
two new stable solutions are created. For small delays
(t4<<0.075) the bifurcation point and branches shown in Fig.
furcation at a critical value otv=a® and two additional 3 do not vary significantly. I_.arger de!ays, however, lead tq a
equilibria are born. The antisynchronous solution loses stal'ore complex bifurcation picture which will be presented in
bility and continues as an unstable branch. The two newHrther work. Interestingly, for a large range ®and «, the
states are stable and have intermediate phases, i.e., are rgigsence of delays leads to the existence of multiple stable
ther synchronous nor antisynchronous and will be termegolutions with the same phase but differing period. Note that
asynchronous. Also shown in this figure are phase solutiongultistable dynamical systems have important applications
in the presence of small delays€0.1). Once again there is as pattern recognition and memory storage devices.
a pitchfork bifurcation from a stable antisynchronous solu- In the limit «— a o function approximates thé pulse
tion leading to the creation of two new stable states for somehape considered in the seminal work of Mirollo and Stro-
critical @. Note, however, that in comparison to the solutionsgatz[6]. In the absence of shunting currents and time delays,
with zero delay,desynchronizatioroccurs. With increasing the only stable periodic solution is the synchronous one as
tq, ac occurs at progressively larger values and for o,  expected. Importantly, however, we have shown, with real-
solution branches move closer to the antisynchronous solustic forms of postsynaptic current, that the introduction of
tion. In Fig. 2 we explicitly follow the antisynchronous so- shunts and the presence of even arbitrarily small delays leads
lution and plot the period of oscillatiom\, for both this to the creation of a stable asynchronous solution. With the
solution and the asynchronous one that is born from it ainclusion of an external inputy>h/r, an integrate-and-fire
a.. The lower set of curves in Fig. 2 corresponds to a sysheuron intrinsically oscillates and rhythmic behavior is pos-
tem with weaker shunting currents than those plotted abovesible in a purely inhibitory network. In this case bifurcation
This confirms the idea that shunts can act to limit the firingdiagrams are qualitatively the same as those presented here,
frequency of the two neuron system. Furthermore, delaybut with a reversal of stability for all solution branches.

computations were performed with=0.4, h=0.25 and a
time scale was chosen such that1.

For small values of the synaptic rate constarthere are
two possible states showing either completgnchrony
0=0,1, orantisynchrony = 1/2 (see Fig. 1 Only the anti-
synchronous state is stable. With increasingcorrespond-
ing to progressively faster synapses, there is a pitchfork bi
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